Cart (Loading....) | Create Account
Close category search window
 

High-power microwave 0.25-μm gate doped-channel GaN/AlGaN heterostructure field effect transistor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Chen, Q. ; APA Opt. Inc., Blaine, MN, USA ; Yang, J.W. ; Gaska, R. ; Khan, M.Asif
more authors

We report on the high-power performance of the 0.25-/spl mu/m gate Doped-Channel GaN/AlGaN Heterostructure Field Effect Transistors (DC-HFETs). At a drain bias voltage of 18 V and drain bias current of 46 mA, these 100-/spl mu/m wide devices exhibit high gain at 8.4 GHz with a power density reaching 1.73 W/mm. The devices also display high gain at moderate power over a wide range of frequencies. This high gain at high frequency is a result of an optimal doping level in the AlGaN layer that gives rise to a high sheet charge density while maintaining a high-channel electron mobility. These results demonstrate the excellent microwave power capability of the GaN/AlGaN based heterostructure field effect transistors.

Published in:

Electron Device Letters, IEEE  (Volume:19 ,  Issue: 2 )

Date of Publication:

Feb. 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.