Cart (Loading....) | Create Account
Close category search window
 

Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mecozzi, A. ; Fondazione Ugo Bordoni, Rome, Italy ; Mork, J.

We present a simple, yet powerful method for calculating nonlinear pulse propagation and pulse interaction in active semiconductor waveguides. The model is based on the density matrix equations, which under realistic operation conditions are shown to lead to an accurate description of the material gain, that includes the dynamics of carrier heating and spectral-hole burning (SHB). A very general and compact description of the amplifier dynamics in terms of an integral equation is derived. The model is used to analyze saturation effects in short pulse amplification and nondegenerate four-wave mixing. An analytical expression for the four-wave mixing response is derived, which extends previous results to the case of short and intense pulses. Saturation of the four-wave mixing signal is shown to be strongly pulsewidth dependent due to ultrafast gain dynamics, and self-phase modulation is shown to give excessive broadening of the conjugate pulse. Finally, the impacts on the noise characteristics are calculated and shown to explain recent experimental results

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:3 ,  Issue: 5 )

Date of Publication:

Oct 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.