By Topic

A further result on the Markov chain model of genetic algorithms and its application to a simulated annealing-like strategy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
J. Suzuki ; Dept. of Math., Osaka Univ., Japan

This paper shows a theoretical property on the Markov chain of genetic algorithms: the stationary distribution focuses on the uniform population with the optimal solution as mutation and crossover probabilities go to zero and some selective pressure defined in this paper goes to infinity. Moreover, as a result, a sufficient condition for ergodicity is derived when a simulated annealing-like strategy is considered. Additionally, the uniform crossover counterpart of the Vose-Liepins formula is derived using the Markov chain model

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:28 ,  Issue: 1 )