By Topic

Dynamic tracking line: feasible tracking region of a robot in conveyor systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tae Hyoung Park ; Sch. of Electr. & Electron. Eng., Chung-Buk Nat. Univ., Cheongju, South Korea ; Beom Hee Lee

The concept of dynamic tracking line is proposed as the feasible tracking region for a robot in a robot-conveyor system, which takes the conveyor speed into consideration. This paper presents an effective method to find the dynamic tracking line in a robotic workcell. The maximum permissible line-speed which is a quantitative measure of the robot capability for conveyor tracking, is defined on the basis of the relation between the end-effector speed and the bounds on the joint velocities, accelerations, and torques. This measure is derived in an analytic form using the parameterized dynamics and kinematics of the manipulator, and some of its properties are established mathematically. The problem of finding the dynamic tracking line is then formulated as a root-solving problem for a single-variable equation, and solved by the use of a simple numerical technique. Finally, numerical examples are presented to demonstrate the methodology and its applications in workspace specification

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:28 ,  Issue: 1 )