By Topic

Parallel algorithms for modules of learning automata

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Thathachar, M. ; Dept. of Electr. Eng., Indian Inst. of Sci., Bangalore, India ; Arvind, M.T.

Parallel algorithms are presented for modules of learning automata with the objective of improving their speed of convergence without compromising accuracy. A general procedure suitable for parallelizing a large class of sequential learning algorithms on a shared memory system is proposed. Results are derived to show the quantitative improvements in speed obtainable using parallelization. The efficacy of the procedure is demonstrated by simulation studies on algorithms for common payoff games, parametrized learning automata and pattern classification problems with noisy classification of training samples

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:28 ,  Issue: 1 )