By Topic

Gauss-elimination-based generation of multiple seed-polynomial pairs for LFSR

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Li-Ren Huang ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Jing-Yang Jou ; Sy-Yen Kuo

This paper presents a new and efficient strategy of pseudorandom pattern generation (PRPG) for IC testing. It uses a general programmable LFSR (P-LFSR) to offer multiple-seed and multiple-polynomial PRPG. The deterministic pattern set generated by an ATPG tool or supplied by the designers is used to guide the generation of pseudorandom patterns. A novel application of the Gauss-elimination procedure is proposed to find the seeds as well as the polynomials. With an intelligent heuristic to further utilize the essential faults, this approach becomes very efficient, even for the random pattern resistant (RPR) circuits. Experiments are conducted on the ISCAS-85 benchmarks and the full scan version of the ISCAS-89 benchmarks. For all benchmark circuits, complete fault coverage is achieved with good balance on the hardware overhead and the test lengths as compared to other schemes

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:16 ,  Issue: 9 )