Cart (Loading....) | Create Account
Close category search window
 

AMBA bus hardware accelerator IP for Viola-Jones face detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Acasandrei, L. ; CNM, Inst. de Microelectron. de Sevilla, Univ. Sevilla, Sevilla, Spain ; Barriga, A.

Face detection is an important aspect for biometrics, video surveillance and human computer interaction. Owing to the complexity of the detection algorithms any biometric system requires a huge amount of computational and memory resources. A direct software-like implementation of any detection algorithm on a low speed, low resource, low power system on chip (SoC) is not feasible. Instead, a software-hardware codesign approach can be used to build hardware accelerators for the most computational consuming parts of the detection algorithms. Therefore the authors propose a compliant advanced microcontroller bus architecture (AMBA) bus hardware IP, a modularised, highly configurable, low power and technology independent core written in an hardware description language (HDL) language. The IP core accelerates Viola-Jones algorithm considered to be one of the most used algorithms for face detection. The hardware accelerator IP is used in an embedded face detection system built around the LEON3 Sparc V8 processor. The authors present the methodology, challenges and performance results for software, hardware and system level design. For the mentioned system the authors have obtained an acceleration factor of 10-12 when using the hardware accelerator in comparison with the software only traditional approach.

Published in:

Computers & Digital Techniques, IET  (Volume:7 ,  Issue: 5 )

Date of Publication:

September 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.