By Topic

Virtual clay modeling using the ISU exoskeleton

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chai, Y.-H. ; Dept. of Mech. Eng., Iowa State Univ., Ames, IA, USA ; Luecke, G.R. ; Edwards, J.C.

A deformable non-uniform rational B-spline (NURBS) based volume is programmed for the Iowa State University (ISU) force-reflecting exoskeleton haptic device. A direct free-form deformation (DFFD) technique is applied for realistic manipulation. In order to implement real-time deformation, a nodal mapping technique is used to connect points on the virtual object with the NURBS volume. This geometric modeling technique is ideally incorporated with the force-reflecting haptic device as a virtual interface. The results presented in this paper introduce details for the complete set-up for a realistic virtual clay modeling task with force feedback. The ISU force-reflecting exoskeleton, coupled with a supporting PUMA 560 manipulator and the virtual clay model are integrated with the WorldToolKit (WTK) graphics display, and the results show that the force feedback from the realistic physically-based virtual environment can greatly enhance the sense of immersion.

Published in:

Virtual Reality Annual International Symposium, 1998. Proceedings., IEEE 1998

Date of Conference:

18-18 1998