By Topic

A new mobile pressure control system for pneumatic actuators using reversible chemical reactions of water

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Koichi Suzumori ; Graduate School of Natural Science and Technology, Okayama University, 700-8530 Japan ; Akira Wada ; Shuichi Wakimoto

Recently, the need of mobile gas sources and gas controller with portability, silence and high efficiency are strongly required for pneumatic actuators, while conventional air compressors and their control systems are large, heavy, noisy, and low-efficient. This paper proposes a new mobile pressure control system using reversible chemical reactions. This report shows its basic mechanism and experimental results using the first prototype based on the electrolysis / synthesis of water, which show a big possibility of this new idea. This device consisting of a proton-exchange membrane (PEM) fuel cell and a current controller can control gas pressure with electric current.

Published in:

2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics

Date of Conference:

9-12 July 2013