Cart (Loading....) | Create Account
Close category search window
 

Comparison study on specific absorption rate of three implantable antennas designed for retinal prosthesis systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Permana, H. ; Sch. of Electr. & Comput. Eng., RMIT Univ., Melbourne, VIC, Australia ; Qiang Fang ; Shuenn-Yuh Lee

The recent development in retinal prostheses brings the hope to restore the vision of blind people. Currently, research efforts have been largely focused on improving the electrode array of the system. However, the electromagnetic exposure to the surrounding area inside a human head caused by the implanted antenna system has been often overlooked. The authors investigate the specific absorption rate distributions inside a multilayer human head model for three implantable rectangle spiral microstrip antennas operating at different frequency bands as well as for one inductive coil antenna, which is popularly used for near-field data and power telemetry. The simulation results, which were obtained by using computer simulation technology Microwave Studio software, suggest that the Medical Implant Communication Service frequency band is the most suitable frequency choice for the currently proposed implanted retinal prosthesis systems. However, with the increase of stimulation electrode density, a higher frequency band might have to be chosen in the future to accommodate the increased bandwidth requirement.

Published in:

Microwaves, Antennas & Propagation, IET  (Volume:7 ,  Issue: 11 )

Date of Publication:

August 20 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.