By Topic

Identifying Protein Complexes Based on Multiple Topological Structures in PPI Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bolin Chen ; Div. of Biomed. Eng., Univ. of Saskatchewan, Saskatoon, SK, Canada ; Fang-xiang Wu

Various computational algorithms are developed to identify protein complexes based on only one of specific topological structures in protein-protein interaction (PPI) networks, such as cliques, dense subgraphs, core-attachment structures and starlike structures. However, protein complexes exhibit intricate connections in a PPI network. They cannot be fully detected by only single topological structure. In this paper, we propose an algorithm based on multiple topological structures to identify protein complexes from PPI networks. In the proposed algorithm, four single topological structure based algorithms are first employed to identify raw predictions with specific topological structures, respectively. Those raw predictions are trimmed according to their topological information or GO annotations. Similar results are carefully merged before generating final predictions. Numerical experiments are conducted on a yeast PPI network of DIP and a human PPI network of HPRD. The predicted results show that the multiple topological structure based algorithm can not only obtain a more number of predictions, but also generate results with high accuracy in terms of f-score, matching with known protein complexes and functional enrichments with GO.

Published in:

NanoBioscience, IEEE Transactions on  (Volume:12 ,  Issue: 3 )