By Topic

A Graph Lattice Approach to Maintaining and Learning Dense Collections of Subgraphs as Image Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Saund, E. ; Intell. Syst. Lab., Palo Alto Res. Center, Palo Alto, CA, USA

Effective object and scene classification and indexing depend on extraction of informative image features. This paper shows how large families of complex image features in the form of subgraphs can be built out of simpler ones through construction of a graph lattice - a hierarchy of related subgraphs linked in a lattice. Robustness is achieved by matching many overlapping and redundant subgraphs, which allows the use of inexpensive exact graph matching, instead of relying on expensive error-tolerant graph matching to a minimal set of ideal model graphs. Efficiency in exact matching is gained by exploitation of the graph lattice data structure. Additionally, the graph lattice enables methods for adaptively growing a feature space of subgraphs tailored to observed data. We develop the approach in the domain of rectilinear line art, specifically for the practical problem of document forms recognition. We are especially interested in methods that require only one or very few labeled training examples per category. We demonstrate two approaches to using the subgraph features for this purpose. Using a bag-of-words feature vector we achieve essentially single-instance learning on a benchmark forms database, following an unsupervised clustering stage. Further performance gains are achieved on a more difficult dataset using a feature voting method and feature selection procedure.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:35 ,  Issue: 10 )