By Topic

Enhancing Physical-Layer Secrecy in Multiantenna Wireless Systems: An Overview of Signal Processing Approaches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hong, Y.-W.P. ; Inst. of Commun. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Pang-Chang Lan ; Kuo, C.-C.J.

This article provides an overview of the signal processing techniques used to enhance secrecy in the physical layer of multiantenna wireless communication systems. Motivated by results in information theory, signal processing techniques in both the data transmission and the channel estimation phases have been explored in the literature to enlarge the signal quality difference at the destination and the eavesdropper. In the data transmission phase, secrecy beamforming and precoding schemes are used to enhance signal quality at the destination while limiting the signal strength at the eavesdropper. Artificial noise (AN) is also used on top of beamformed or precoded signals to further reduce the reception quality at the eavesdropper. In the channel estimation phase, training procedures are developed to enable better channel estimation performance at the destination than at the eavesdropper. As a result, the effective signal-to-noise ratios (SNRs) at the two terminals will be different and a more favorable secrecy channel will be made available for use in the data transmission phase. Finally, future research directions are discussed.

Published in:

Signal Processing Magazine, IEEE  (Volume:30 ,  Issue: 5 )