Cart (Loading....) | Create Account
Close category search window
 

Localized Stability Checking and Design of IC Power Delivery With Distributed Voltage Regulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Suming Lai ; Dept. of Electr. & Comput. Eng., Texas A&M Univ., College Station, TX, USA ; Boyuan Yan ; Peng Li

Placing multiple voltage regulators onto the die is an effective way of enabling distributed on-chip voltage regulation and provides significant benefits in suppressing various types of power supply noise. However, the complex interactions between the active voltage regulators and the large passive subnetwork may render the complete power delivery network (PDN) unstable, leading to design failures. While traditional stability measures such as phase margin are not applicable to regulated PDNs that have a large number of loops, a brute-force analysis of network stability can be impractical due to the high complexity of a given PDN. We present a hybrid stability margin concept and the associated stability-checking method for PDNs with integrated linear low-dropout voltage regulators (LDOs). With theoretical rigor, the proposed approach is local in the sense that the stability of the entire network can be efficiently examined through a hybrid stability constraint that is defined locally for individual LDOs. In the same spirit, we propose a localized LDO design methodology that optimizes individual LDOs in a stand-alone manner while ensuring the network-level stability. Key circuit-level design considerations and tradeoffs involved in stability-ensuring LDO design are also discussed.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:32 ,  Issue: 9 )

Date of Publication:

Sept. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.