By Topic

Through Silicon Via Aware Design Planning for Thermally Efficient 3-D Integrated Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yibo Chen ; Synopsys, Inc., Mountain View, CA, USA ; Kursun, E. ; Motschman, D. ; Johnson, C.
more authors

3-D integrated circuits (3-D ICs) offer performance advantages due to their increased bandwidth and reduced wire-length enabled by through-silicon-via structures (TSVs). Traditionally TSVs have been considered to improve the thermal conductivity in the vertical direction. However, the lateral thermal blockage effect becomes increasingly important for TSV via farms (a cluster of TSV vias used for signal bus connections between layers) because the TSV size and pitch continue to scale in μm range and the metal to insulator ratio becomes smaller. Consequently, dense TSV farms can create lateral thermal blockages in thinned silicon substrate and exacerbate the local hotspots. In this paper, we propose a thermal-aware via farm placement technique for 3-D ICs to minimize lateral heat blockages caused by dense signal bus TSV structures. By incorporating thermal conductivity profile of via farm blocks in the design flow and enabling placement/aspect ratio optimization, the corresponding hotspots can be minimized within the wire-length and area constraints.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:32 ,  Issue: 9 )