Cart (Loading....) | Create Account
Close category search window

Easy measurement and analysis method of zeta potential and electrophoretic mobility of water-dispersed colloidal particles by using a self-mixing solid-state laser

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sudo, S. ; Department of Physics, Tokyo City University, Tamazutsumi, Setagaya, Tokyo 158-8557, Japan ; Ohtomo, T. ; Otsuka, K.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We describe a highly sensitive method of measuring electrophoretic mobility and zeta potential of water-dispersed colloidal particles by using a self-mixing laser Doppler velocimeter with a laser-diode-pumped, thin-slice solid-state laser with extremely high optical sensitivity. The power spectra of laser output modulated by reinjected laser light scattered by the electrophoretic particles were observed. The power spectrum cannot be described by the well-known formula for translational motion or flowing Brownian motion, i.e., a combination of Doppler shift, diffusion, and translation. The power spectra shape is found to reflect the velocity distribution of electrophoretic particles in a capillary tube due to the electro-osmotic flow contribution. Not only evaluation of the electrophoretic mobility and zeta potential but also the particle diameter undergoing electrophoretic motion can be performed from the shape of the power spectrum.

Published in:

Journal of Applied Physics  (Volume:114 ,  Issue: 6 )

Date of Publication:

Aug 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.