By Topic

Sparse Conjoint Analysis Through Maximum Likelihood Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tsakonas, E. ; ACCESS Linnaeus Centre, R. Inst. of Technol. (KTH), Stockholm, Sweden ; Jalden, J. ; Sidiropoulos, N.D. ; Ottersten, B.

Conjoint analysis (CA) is a classical tool used in preference assessment, where the objective is to estimate the utility function of an individual, or a group of individuals, based on expressed preference data. An example is choice-based CA for consumer profiling, i.e., unveiling consumer utility functions based solely on choices between products. A statistical model for choice-based CA is investigated in this paper. Unlike recent classification-based approaches, a sparsity-aware Gaussian maximum likelihood (ML) formulation is proposed to estimate the model parameters. Drawing from related robust parsimonious modeling approaches, the model uses sparsity constraints to account for outliers and to detect the salient features that influence decisions. Contributions include conditions for statistical identifiability, derivation of the pertinent Cramér-Rao Lower Bound (CRLB), and ML consistency conditions for the proposed sparse nonlinear model. The proposed ML approach lends itself naturally to ℓ1-type convex relaxations which are well-suited for distributed implementation, based on the alternating direction method of multipliers (ADMM). A particular decomposition is advocated which bypasses the apparent need for outlier communication, thus maintaining scalability. The performance of the proposed ML approach is demonstrated by comparing against the associated CRLB and prior state-of-the-art using both synthetic and real data sets.

Published in:

Signal Processing, IEEE Transactions on  (Volume:61 ,  Issue: 22 )