Cart (Loading....) | Create Account
Close category search window
 

An algorithm analog-to-digital converter using unity-gain buffers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ogawa, S. ; Res. Inst. of Electron., Shizuoka Univ., Hamamatsu, Japan ; Watanabe, K.

An algorithmic stage for bipolar 1-b analog-to-digital (A/D) conversion using a unity-gain buffer is proposed. Cyclic and pipeline A/D converter architectures using this stage iteratively or in cascade are also described. Error analysis and SPICE simulations show that a conversion accuracy higher than 8-b and a conversion rate up to 10 Mb/s are attainable with presently available 3-μm CMOS technologies. Video frequency operation is also possible with finer linewidths. The component requirement is minimum, and thus it is best suited for an analog interface in application-specific integrated circuits (ASIC). A prototype cyclid A/D converter built using discrete components confirms the principles of operation

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:39 ,  Issue: 6 )

Date of Publication:

Dec 1990

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.