By Topic

SociAL Sensor Analytics: Measuring phenomenology at scale

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Corley, C.D. ; Knowledge Discovery & Inf., & Visual Analytics, Pacific Northwest Nat. Lab., Richland, WA, USA ; Dowling, C. ; Rose, S.J. ; McKenzie, T.

The objective of this paper is to present a system for interrogating immense social media streams through analytical methodologies that characterize topics and events critical to tactical and strategic planning. First, we propose a conceptual framework for interpreting social media as a sensor network. Time-series models and topic clustering algorithms are used to implement this concept into a functioning analytical system. Next, we address two scientific challenges: 1) to understand, quantify, and baseline phenomenology of social media at scale, and 2) to develop analytical methodologies to detect and investigate events of interest. This paper then documents computational methods and reports experimental findings that address these challenges. Ultimately, the ability to process billions of social media posts per week over a period of years enables the identification of patterns and predictors of tactical and strategic concerns at an unprecedented rate through SociAL Sensor Analytics (SALSA).

Published in:

Intelligence and Security Informatics (ISI), 2013 IEEE International Conference on

Date of Conference:

4-7 June 2013