By Topic

Learning to classify emotional content in crisis-related tweets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Brynielsson, J. ; Swedish Defence Res. Agency (FOI), Stockholm, Sweden ; Johansson, F. ; Westling, A.

Social media is increasingly being used during crises. This makes it possible for crisis responders to collect and process crisis-related user generated content to allow for improved situational awareness. We describe a methodology for collecting a large number of relevant tweets and annotating them with emotional labels. This methodology has been used for creating a training data set consisting of manually annotated tweets from the Sandy hurricane. Those tweets have been utilized for building machine learning classifiers able to automatically classify new tweets. Results show that a support vector machine achieves the best results (60% accuracy on the multi-classification problem).

Published in:

Intelligence and Security Informatics (ISI), 2013 IEEE International Conference on

Date of Conference:

4-7 June 2013