By Topic

Low-Power On-Chip Charge-Recycling DC-DC Conversion Circuit and System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Ueda, K. ; Renesas Electron. Corp., Hitachinaka, Japan ; Morishita, F. ; Okura, S. ; Okamura, L.
more authors

A charge-recycling circuit and system that reuses the energy between two or more stacked CPUs is proposed in order to double the life of a battery. In this architecture, CPUs are divided into upper and lower load groups, and electrical charges are shared among the stacked CPUs and a tank capacitor. Charges are temporarily stored in the tank capacitor and are then reused. To control divided loads, a high-speed and energy-efficient regulator is needed. Internal circuit voltage variation between the upper and lower modules is determined by seven low-drop-out (LDO) regulators, a voltage-boosting capacitor circuit, and the tank capacitor. As a result, stable voltage can be supplied to each CPU, even if the upper and lower loads are different or a battery is being used. The LDOs improve the margin of collection in the tank capacitor or task schedule operation, and power efficiency is raised even further. The circuit can be implemented on silicon without a large external control circuit and inductor such as a switching regulator. This circuit was applied to an in-vehicle lock-step system because the upper and lower loads and tasks are the same. Additionally, by using the proposed task scheduling to maximize efficiency, this circuit can be applied not only to lock-step systems but also to general systems. Test chips were fabricated using 90-nm standard CMOS technology. Although the maximum power efficiency of a conventional circuit with a simple LDO is 44.4%, efficiency of the proposed charge-recycling circuit turned out to be as high as 87.1% with the test chips.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:48 ,  Issue: 11 )