By Topic

An Integrated Framework for Obstacle Mapping With See-Through Capabilities Using Laser and Wireless Channel Measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alejandro Gonzalez-Ruiz ; Dept. of Electr. & Comput. Eng., Univ. of California Santa Barbara, Santa Barbara, CA, USA ; Alireza Ghaffarkhah ; Yasamin Mostofi

In this paper, we consider a team of mobile robots that are tasked with building a map of the obstacles, including occluded ones, in a given environment. We propose an integrated framework for mapping with see-through capabilities using laser and wireless channel measurements, which can provide mapping capabilities beyond existing methods in the literature. Our approach leverages the laser measurements to map the visible parts of the environment (the parts that can be sensed directly by the laser scanners) using occupancy grid mapping. The parts that cannot be properly mapped by laser scanners (e.g., the occluded parts) are then identified and mapped based on wireless channel measurements. For the latter, we extend our recently-proposed wireless-based obstacle mapping framework to a probabilistic approach using Bayesian Compressive Sensing. We further consider an integrated approach based on using total variation minimization. We compare the performance of our two integrated methods, using both simulated and real data, and show the underlying tradeoffs. Finally, we propose an adaptive path planning strategy that uses the current estimate of uncertainty to collect wireless measurements that are more informative for obstacle mapping. Overall, our framework enables mapping occluded structures that cannot be mapped with laser scanners alone or a small number of wireless measurements. Our experimental robotic testbed further confirms that the proposed integrated framework can map a more complex real occluded structure that cannot be mapped with existing strategies in the literature.

Published in:

IEEE Sensors Journal  (Volume:14 ,  Issue: 1 )