By Topic

Theoretical Study on Dilute Nitride 1.3 \mu{\rm m} Quantum Well Semiconductor Optical Amplifiers: Incorporation of N Compositional Fluctuations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiao Sun ; Dept. of Electr. & Electron. Eng., Univ. of Bristol, Bristol, UK ; Vogiatzis, N. ; Rorison, J.M.

Analysis of the broadband gain of a GaInNAs single quantum well (QW) semiconductor optical amplifier (SOA) is developed considering the tuneability of the gain in detail. The SOA is analyzed as a single device multiwavelength channel amplifier in a wavelength-division-multiplexing (WDM) network. The gain model includes the QW material gain derived using a band anti-crossing model and includes quantum dot (QD) fluctuations in the conduction band arising from compositional fluctuations of N within the QW. The material gain is broadened by adding the gain of the QD-like fluctuations and the QW confined level. Simultaneous amplification of two optical signals is analyzed, one at the peak of the QW gain and one at the peak of the QD distribution gain, and the linear and nonlinear regions are established. In addition, multi-channel signal amplification, appropriate for WDM applications, has been modeled across the frequency range of the QW and the QD-like fluctuations and no wavelength degradation between the channels was observed demonstrating the potential of dilute nitride QW as multiwavelength SOAs at optical communications wavelengths.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:49 ,  Issue: 10 )