Cart (Loading....) | Create Account
Close category search window

Predicting Interacting Residues Using Long-Distance Information and Novel Decoding in Hidden Markov Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kern, C. ; Dept. of Comput. & Inf. Sci., Univ. of Delaware, Newark, DE, USA ; Gonzalez, A.J. ; Li Liao ; Vijay-Shanker, K.

Identification of interacting residues involved in protein-protein and protein-ligand interaction is critical for the prediction and understanding of the interaction and has practical impact on mutagenesis and drug design. In this work, we introduce a new decoding algorithm, ETB-Viterbi, with an early traceback mechanism, and apply it to interaction profile hidden Markov models (ipHMMs) to enable optimized incorporation of long-distance correlations between interacting residues, leading to improved prediction accuracy. The method was applied and tested to a set of domain-domain interaction families from the 3DID database, and showed statistically significant improvement in accuracy measured by F-score. To gauge and assess the method's effectiveness and robustness in capturing the correlation signals, sets of simulated data based on the 3DID dataset with controllable correlation between interacting residues were also used, as well as reversed sequence orientation. It was demonstrated that the prediction consistently improves as the correlations increase and is not significantly affected by sequence orientation.

Published in:

NanoBioscience, IEEE Transactions on  (Volume:12 ,  Issue: 3 )

Date of Publication:

Sept. 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.