By Topic

A 0.1–1.5 GHz 8-bit Inverter-Based Digital-to-Phase Converter Using Harmonic Rejection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ming-Shuan Chen ; Univ. of California, Los Angeles, Los Angeles, CA, USA ; Hafez, A.A. ; Chih-Kong Ken Yang

This paper presents a digital-to-phase converter (DPC) with 8-bits of resolution and a wide frequency range for the input/output clocks. A harmonic rejection (HR) filter is introduced to improve linearity across a frequency range of 0.1-1.5 GHz. Instead of using time-domain averaging of phase interpolators (PI) in a conventional DPC, the frequency-domain filter directly cancels the 3rd- and 5th-order harmonics of the phase interpolated signal. The architecture is designed using an inverter-based PI circuit structure to improve power consumption and area. The inverter nonlinearity is improved using resistive averaging. The residual INL and DNL are further reduced by nonlinear weighting of the interpolation. Designed and fabricated in 65-nm CMOS technology, the DPC demonstrates a maximum INL and DNL of 1.33 and 0.52 LSB while consumes a power of 4.3 mW and occupies 0.06 mm2 area.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:48 ,  Issue: 11 )