By Topic

The Bang-Bang Funnel Controller for Uncertain Nonlinear Systems With Arbitrary Relative Degree

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Liberzon, D. ; Coordinated Sci. Lab., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA ; Trenn, S.

The paper considers output tracking control of uncertain nonlinear systems with arbitrary known relative degree and known sign of the high frequency gain. The tracking objective is formulated in terms of a time-varying bound-a funnel-around a given reference signal. The proposed controller is bang-bang with two control values. The controller switching logic handles arbitrarily high relative degree in an inductive manner with the help of auxiliary derivative funnels. We formulate a set of feasibility assumptions under which the controller maintains the tracking error within the funnel. Furthermore, we prove that under mild additional assumptions the considered system class satisfies these feasibility assumptions if the selected control values are sufficiently large in magnitude. Finally, we study the effect of time delays in the feedback loop and we are able to show that also in this case the proposed bang-bang funnel controller works under slightly adjusted feasibility assumptions.

Published in:

Automatic Control, IEEE Transactions on  (Volume:58 ,  Issue: 12 )