By Topic

Underactuated Adaptive Gripper Using Flexural Buckling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gwang-Pil Jung ; Sch. of Mech. & Aerosp. Eng./Inst. of Adv. Machinery & Design, Seoul Nat. Univ., Seoul, South Korea ; Je-Sung Koh ; Kyu-Jin Cho

In gripping devices, adapting to highly unstructured environments such as irregularly shaped objects and surfaces continues to be challenging. To achieve safe and reliable gripping, many researchers have employed various underactuated mechanisms such as differential and compliant mechanisms. All these mechanisms have demonstrated successful gripping performances. They, however, have hardly considered scalability issues of underactuated mechanisms originating from additional force transmissions and onerous mechanism assembly. In this paper, we propose a structurally simple and scalable underactuated mechanism. The mechanism is demonstrated on a gripping device called the “Buckling gripper.” The Buckling gripper achieves adaptive gripping on rugged, uneven, and undulating surfaces typically found in the natural world. The key design principle of the Buckling gripper is inspired by a caterpillar's proleg that highly deforms depending on the shape of the contact surface. This key principle is applied to the gripper via flexural buckling. Normally, buckling is avoided in mechanical designs, but the buckling behavior of a flexure with an adequately selected length provides wide gripping range with a narrow range of force variation, which provides a sufficient number of contacts with even contact forces. As a result, the Buckling gripper achieves adaptive gripping on various surfaces, similar to a caterpillar.

Published in:

Robotics, IEEE Transactions on  (Volume:29 ,  Issue: 6 )