By Topic

Implications of the Power Wall: Dim Cores and Reconfigurable Logic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Liang Wang ; Univ. of Virginia, Charlottesville, VA, USA ; Skadron, K.

Near-threshold operation can increase the number of simultaneously active cores at the expense of much lower operating frequency ("dim silicon"), but dim cores suffer from diminishing returns as the number of cores increases. At this point, hardware accelerators become more efficient alternatives. To explore such a broad design space, the authors present an analytical model to quantify the performance limits of many-core, heterogeneous systems operating at near-threshold voltage. The model augments Amdahl's law with detailed scaling of frequency and power, calibrated by circuit-level simulations using a modified Predictive Technology Model (PTM), and factors in the effects of process variations. Results show that dim cores do indeed boost throughput, even in the presence of process variations, but significant benefits are achieved only in applications with high parallelism or novel architectures to mitigate variation. Reconfigurable logic that supports a variety of accelerators is more beneficial than "dim cores" or dedicated, fixed-logic accelerators, unless the kernel targeted by fixed logic has overwhelming coverage across applications, or the speedup of the dedicated accelerator over the reconfigurable equivalent is significant.

Published in:

Micro, IEEE  (Volume:33 ,  Issue: 5 )