By Topic

Coordinated Energy Dispatching in Microgrid With Wind Power Generation and Plug-in Electric Vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ting Wu ; College of Electrical Engineering, Zhejiang University, Hangzhou, China ; Qiang Yang ; Zhejing Bao ; Wenjun Yan

The integration of a massive number of small-scale wind turbines and plug-in electric vehicles (PEVs) brought about urgent technical challenge to power distribution network operators (DNOs) in terms of secure power supply and energy dispatching optimization. In this paper, we exploited three coordinated wind-PEV energy dispatching approaches in the vehicle-to-grid (V2G) context, i.e., valley searching, interruptible and variable-rate energy dispatching, aiming to promote the user demand response through optimizing the utilization efficiency of wind power generation as well as meeting the dynamic power demands. This issue is addressed in a stochastic framework considering the uncertainties of wind power generation as well as the statistical PEV driving patterns. The performances of the proposed solutions are assessed through a comparative study through numerical simulation experiments covering sufficient system scenarios by the use of scenario generation and reduction techniques. The result demonstrates that the energy dispatch based on the latter two approaches can achieve better matching between power generation and demands as well as PEV user satisfaction. In addition, the suggested approaches can be adopted by DNOs in practice with minimal deployment hurdles to promote the energy supplies within microgrid with wind power sources and PEVs.

Published in:

IEEE Transactions on Smart Grid  (Volume:4 ,  Issue: 3 )