Cart (Loading....) | Create Account
Close category search window
 

Thermo mechanical challenges for processing and packaging stacked ultrathin wafers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

During the manufacturing of 3D stacked-die packaging structures, different operations such as micro bumps formation, underfilling, flip chip and overmold curing will introduce residual stresses, which will interact with subsequent service loads applied to the package and may also influence the growth of cracks in critical locations. In this work, the packaging of a 3D-RAM mounted on a logic die is simulated taking the thermal history into account by simulating the main process steps and by adapting the mechanical stiffness of the materials. The resulting stress/strain tensors are taken as initial condition of the following step and the mechanical properties of the new materials added to the process are adapted. The resulting stresses and strains at every step are extracted from the model to identify the most critical processing steps. A die to wafer approach is used for the stacking process as it allows the integration of heterogeneous and different die size. In this work we show the simulation results after each processing step for two die stacking approaches: (a) mold wafer reconstruction, (b) window wafer reconstruction. In the first case, high warpage is observed. In the second case, warpage is reduced but high stress concentration is observed in the logic die.

Published in:

Electronic Components and Technology Conference (ECTC), 2013 IEEE 63rd

Date of Conference:

28-31 May 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.