By Topic

A comparative simulation study of 3D through silicon stack assembly processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kamal Karimanal ; Cielution LLC

A memory stack on logic 3D IC stack was considered for comparative study of warpage response to two different process choices, namely, Die to Die (D2D) and Package to Die (P2D) assembly. Process and reliability modeling software CielMech, and Commercial Finite Element Analysis (FEA) software ANSYS Mechanical were utilized to simulate thermo-mechanical effects of sequential chip attach, underfilling and encapsulation process steps for the chosen flows. Warpage at room temperature as well as attach temperature after each attach step were compared. Results indicated that underfill, substrate, and mold compound thermal strains play important roles in warpage evolution. Significant differences in the final assembled state warpage was predicted and is attributable to path dependence of warpage evolution.

Published in:

2013 IEEE 63rd Electronic Components and Technology Conference

Date of Conference:

28-31 May 2013