By Topic

Smart Grid Infrastructure Using a Hybrid Network Architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
F. Salvadori ; Federal University of Paraiba, Brazil ; C. S. Gehrke ; A. C. de Oliveira ; M. de Campos
more authors

Smart grid can be defined as a modern electric power grid infrastructure for improved efficiency, reliability and safety, with smooth integration of renewable and alternative energy sources through automated control and modern communications technologies. The increase need for more effective power electrical systems control turned the development of smart grids, the main object of study for many researchers. This paper proposes a digital system for condition monitoring, diagnosis and supervisory control applied to smart grids. The system is based on hybrid network architecture (HNA), consisting of a wired infrastructure, a wireless sensor network (WSN), a power line communications (PLC) and a controller area network (CAN). The system is based on three hardware topologies: remote data acquisition units (RDAUs), intelligent sensors modules (ISMs) and a PLC modem. The basic characteristics are: a) easy/low cost implementation, b) easy to set up by user, c) easy implementation of redundant routines (security), d) portability/versatility, and e) open system. To validate the developed system, it was implanted in one underground electric substation power distribution, characterized as an extremely hostile environment for supervisory control applications. In this application, the main challenge is to establish a communication system installed inside the substation with the outside (operations center-OC) considering that there are not commercial solutions appropriate to solve completely this problem.

Published in:

IEEE Transactions on Smart Grid  (Volume:4 ,  Issue: 3 )