By Topic

Wide Frequency Range Adaptive Phasor and Frequency PMU Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Innocent Kamwa ; Power Syst. & Math., Hydro-Quebec/IREQ, Varennes, QC, Canada ; S. R. Samantaray ; Geza Joos

The paper deals with developing and testing frequency-adaptive PMU algorithms with wider linearity range than specified in IEEE Std C37.118-1. This goal is achieved by means of three different concepts encompassing robust state-of-the-art design approaches: 1) FIR bandpass filtering, 2) extended Kalman filtering (EKF), and 3) discrete Fourier transform (DFT) demodulation with FIR low-pass smoothing. While FIR-based PMUs are linear phase with no overshoot in either phase or amplitude step responses, the adaptive EKF PMU is more computer-intensive but allows for a reduced group delay and better out-of-band interference rejection at the cost of a phase step response with overshoot. Frequency measurement performances of the various PMUs are assessed in detail. It turned out that FIR PMUs are best for meeting Std C37-118-1 metrics but they are outperformed by EKF under changing harmonics. Test results on three recent commercial PMU models further confirm that PMU algorithms meeting standard C37-118-1 can behave quite differently under dynamic conditions.

Published in:

IEEE Transactions on Smart Grid  (Volume:5 ,  Issue: 2 )