By Topic

Pruning Incremental Linear Model Trees with Approximate Lookahead

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hapfelmeier, A. ; Dept. of Comput. Sci., Tech. Univ. Munchen, Garching, Germany ; Pfahringer, B. ; Kramer, S.

Incremental linear model trees with approximate lookahead are fast, but produce overly large trees. This is due to non-optimal splitting decisions boosted by a possibly unlimited number of examples obtained from a data source. To keep the processing speed high and the tree complexity low, appropriate incremental pruning techniques are needed. In this paper, we introduce a pruning technique for the class of incremental linear model trees with approximate lookahead on stationary data sources. Experimental results show that the advantage of approximate lookahead in terms of processing speed can be further improved by producing much smaller and consequently more explanatory, less memory consuming trees on high-dimensional data. This is done at the expense of only a small increase in prediction error. Additionally, the pruning algorithm can be tuned to either produce less accurate model trees at a much higher processing speed or, alternatively, more accurate trees at the expense of higher processing times.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:26 ,  Issue: 8 )