Cart (Loading....) | Create Account
Close category search window
 

TIFAflow: enhancing traffic archiving system with flow granularity for forensic analysis in network security

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
5 Author(s)
Chen, Z. ; Research Institute of Information Technology and Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084, China ; Ruan, L. ; Cao, J. ; Yu, Y.
more authors

The archiving of Internet traffic is an essential function for retrospective network event analysis and forensic computer communication. The state-of-the-art approach for network monitoring and analysis involves storage and analysis of network flow statistic. However, this approach loses much valuable information within the Internet traffic. With the advancement of commodity hardware, in particular the volume of storage devices and the speed of interconnect technologies used in network adapter cards and multi-core processors, it is now possible to capture 10 Gbps and beyond real-time network traffic using a commodity computer, such as n2disk. Also with the advancement of distributed file system (such as Hadoop, ZFS, etc.) and open cloud computing platform (such as OpenStack, CloudStack, and Eucalyptus, etc.), it is practical to store such large volume of traffic data and fully in-depth analyse the inside communication within an acceptable latency. In this paper, based on wellknown TimeMachine, we present TIFAflow, the design and implementation of a novel system for archiving and querying network flows. Firstly, we enhance the traffic archiving system named TImemachine+FAstbit (TIFA) with flow granularity, i.e., supply the system with flow table and flow module. Secondly, based on real network traces, we conduct performance comparison experiments of TIFAflow with other implementations such as common database solution, TimeMachine and TIFA system. Finally, based on comparison results, we demonstrate that TIFAflow has a higher performance improvement in storing and querying performance than TimeMachine and TIFA, both in time and space metrics.

Published in:

Tsinghua Science and Technology  (Volume:18 ,  Issue: 4 )

Date of Publication:

August 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.