By Topic

Exploiting wireless connectivity for robustness in WOBAN

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

This article studies how next-generation optical access networks can exploit the properties of wireless connectivity to provide improved quality of service to users, and reports on a corresponding experimental prototype as well. Optical access networks using the passive optical network architecture are being increasingly deployed worldwide for fiber-to-the-home/business applications. While a PON can support higher data rates, it suffers from its tree architecture since it is vulnerable to a fiber cut on its tree¿s trunk, which will disrupt service to its users. However, by exploiting the properties of wireless connectivity, such as a wireless mesh in the front-end, the network can be made more robust. In case of a network element failure, an alternate path through the wireless-wireline integrated network may be selected, if it exists. Such a network can provide reliable high-capacity connectivity to untethered wireless devices which may be mobile as well. For such wireless-optical broadband access networks, we study a Risk-Aware Routing (RAR) algorithm to make it fault-tolerant and self-healing in case of failures. We also report on results from an experimental prototype developed in our laboratory.

Published in:

Network, IEEE  (Volume:27 ,  Issue: 4 )