Cart (Loading....) | Create Account
Close category search window
 

Frequency Limitations of First-Order g_{m} - RC All-Pass Delay Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Garakoui, S.K. ; Integrated Circuit Design group, Univ. of Twente, Enschede, Netherlands ; Klumperink, E.A.M. ; Nauta, B. ; van Vliet, F.E.

All-pass filter circuits can implement a time delay but, in practice, show delay and gain variations versus frequency, limiting their useful frequency range. This brief derives analytical equations to estimate this frequency range, given a certain maximum allowable budget for variation in delay and gain. We analyze and compare two well-known gm - RC first-order all-pass circuits, which can be compactly realized in CMOS technology and relate their delay variation to the main pole frequency. Modeling parasitic poles and putting a constraint on gain variation, equations for the maximum achievable pole frequency and delay variation versus frequency are derived. These equations are compared with simulation and used to design and compare delay cells satisfying given design goals.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:60 ,  Issue: 9 )

Date of Publication:

Sept. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.