Cart (Loading....) | Create Account
Close category search window
 

Secrecy Outage Capacity of Fading Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gungor, O. ; Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH, USA ; Jian Tan ; Koksal, C.E. ; El-Gamal, H.
more authors

This paper considers point-to-point secure communication over flat fading channels under an outage constraint. More specifically, we extend the definition of outage capacity to account for the secrecy constraint and obtain sharp characterizations of the corresponding fundamental limits under two different assumptions on the transmitter channel state information (CSI). First, we find the outage secrecy capacity assuming that the transmitter has perfect knowledge of the legitimate and eavesdropper channel gains. In this scenario, the capacity achieving scheme relies on opportunistically exchanging private keys between the legitimate nodes. These keys are stored in a key buffer and later used to secure delay sensitive data using the Vernam's one time pad technique. We then extend our results to the more practical scenario where the transmitter is assumed to know only the legitimate channel gain. Here, our achievability arguments rely on privacy amplification techniques to generate secret key bits. In the two cases, we also characterize the optimal power control policies which, interestingly, turn out to be a judicious combination of channel inversion and the optimal ergodic strategy. Finally, we analyze the effect of key buffer overflow on the overall outage probability.

Published in:

Information Theory, IEEE Transactions on  (Volume:59 ,  Issue: 9 )

Date of Publication:

Sept. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.