By Topic

Single-Channel Blind Separation Using Pseudo-Stereo Mixture and Complex 2-D Histogram

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tengtrairat, N. ; Sch. of Electr. & Electron. Eng., Newcastle Univ., Newcastle upon Tyne, UK ; Bin Gao ; Woo, W.L. ; Dlay, S.S.

A novel single-channel blind source separation (SCBSS) algorithm is presented. The proposed algorithm yields at least three benefits of the SCBSS solution: 1) resemblance of a stereo signal concept given by one microphone; 2) independent of initialization and a priori knowledge of the sources; and 3) it does not require iterative optimization. The separation process consists of two steps: 1) estimation of source characteristics, where the source signals are modeled by the autoregressive process and 2) construction of masks using only the single-channel mixture. A new pseudo-stereo mixture is formulated by weighting and time-shifting the original single-channel mixture. This creates an artificial mixing system whose parameters will be estimated through our proposed weighted complex 2-D histogram. In this paper, we derive the separability of the proposed mixture model. Conditions required for unique mask construction based on maximum likelihood are also identified. Finally, experimental testing on both synthetic and real-audio sources is conducted to verify that the proposed algorithm yields superior performance and is computationally very fast compared with existing methods.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:24 ,  Issue: 11 )