By Topic

Learning to Segment and Track in RGBD

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alex Teichman ; Stanford University, Palo Alto, United States ; Jake T. Lussier ; Sebastian Thrun

We consider the problem of segmenting and tracking deformable objects in color video with depth (RGBD) data available from commodity sensors such as the Asus Xtion Pro Live or Microsoft Kinect. We frame this problem with very few assumptions-no prior object model, no stationary sensor, and no prior 3-D map-thus making a solution potentially useful for a large number of applications, including semi-supervised learning, 3-D model capture, and object recognition. Our approach makes use of a rich feature set, including local image appearance, depth discontinuities, optical flow, and surface normals to inform the segmentation decision in a conditional random field model. In contrast to previous work in this field, the proposed method learns how to best make use of these features from ground-truth segmented sequences. We provide qualitative and quantitative analyses which demonstrate substantial improvement over the state of the art. This paper is an extended version of our previous work. Building on our previous work, we show that it is possible to achieve an order of magnitude speedup and thus real-time performance ( ~ 20 FPS) on a laptop computer by applying simple algorithmic optimizations to the original work. This speedup comes at only a minor cost in overall accuracy and thus makes this approach applicable to a broader range of tasks. We demonstrate one such task: real-time, online, interactive segmentation to efficiently collect training data for an off-the-shelf object detector.

Published in:

IEEE Transactions on Automation Science and Engineering  (Volume:10 ,  Issue: 4 )