By Topic

Improving Activity Recognition by Segmental Pattern Mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Avci, U. ; Dept. of Inf. Eng. & Comput. Sci., Univ. of Trento, Trento, Italy ; Passerini, A.

Activity recognition is a key task for the development of advanced and effective ubiquitous applications in fields like ambient assisted living. A major problem in designing effective recognition algorithms is the difficulty of incorporating long-range dependencies between distant time instants without incurring substantial increase in computational complexity of inference. In this paper we present a novel approach for introducing long-range interactions based on sequential pattern mining. The algorithm searches for patterns characterizing time segments during which the same activity is performed. A probabilistic model is learned to represent the distribution of pattern matches along sequences, trying to maximize the coverage of an activity segment by a pattern match. The model is integrated in a segmental labeling algorithm and applied to novel sequences, tagged according to matches of the extracted patterns. The rationale of the approach is that restricting dependencies to span the same activity segment (i.e., sharing the same label), allows keeping inference tractable. An experimental evaluation shows that enriching sensor-based representations with the mined patterns allows improving results over sequential and segmental labeling algorithms in most of the cases. An analysis of the discovered patterns highlights non-trivial interactions spanning over a significant time horizon.

description of the attached tkde-gagraphic-127.jpg linked by @xlink:href description of the attached tkde-gagraphic-127.jpg linked by @xlink:href

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:26 ,  Issue: 4 )