By Topic

Joint Wireless Information and Energy Transfer in a Two-User MIMO Interference Channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jaehyun Park ; Broadcasting and Telecommunications Convergence Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon, Korea ; Bruno Clerckx

This paper investigates joint wireless information and energy transfer in a two-user MIMO interference channel, in which each receiver either decodes the incoming information data (information decoding, ID) or harvests the RF energy (energy harvesting, EH) to operate with a potentially perpetual energy supply. In the two-user interference channel, we have four different scenarios according to the receiver mode - (ID1, ID2), (EH1, EH2), (EH1, ID2), and (ID1, EH2). While the maximum information bit rate is unknown and finding the optimal transmission strategy is still open for (ID1, ID2), we have derived the optimal transmission strategy achieving the maximum harvested energy for (EH1, EH2). For (EH1, ID2), and (ID1, EH2), we find a necessary condition of the optimal transmission strategy and, accordingly, identify the achievable rate-energy (R-E) tradeoff region for two transmission strategies that satisfy the necessary condition - maximum energy beamforming (MEB) and minimum leakage beamforming (MLB). Furthermore, a new transmission strategy satisfying the necessary condition - signal-to-leakage-and-energy ratio (SLER) maximization beamforming - is proposed and shown to exhibit a better R-E region than the MEB and the MLB strategies. Finally, we propose a mode scheduling method to switch between (EH1, ID2) and (ID1, EH2) based on the SLER.

Published in:

IEEE Transactions on Wireless Communications  (Volume:12 ,  Issue: 8 )