Cart (Loading....) | Create Account
Close category search window

Switchable optical ultra-wideband pulse generator based on Polarization Modulator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wei Zhihu ; Inst. of Commun. Eng., PLA Univ. of Sci. & Technol., Nanjing, China ; Wang Rong ; Pu Tao ; Sun Guodan
more authors

In order to generate optical Ultra-Wideband (UWB) pulse train with a switchable shape, a novel method based on a Polarization Modulator (PolM), a Polarization Controller (PC) and a delay line, is proposed and experimentally demonstrated. Experimental results show that when a Gaussian pulse is applied to the PolM, under different phase shifts introduced by the PC, a gauss or gauss doublet pulse will be generated at the output of the Polarization Beam Splitter (PBS). If the two-path signals after PBS are properly delayed, Gaussian monocycles or third-order gauss pulses will be generated at the output of the Polarization Beam Combiner (PBC).

Published in:

Communications, China  (Volume:10 ,  Issue: 7 )

Date of Publication:

July 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.