By Topic

A Novel Voltage-Programmed Pixel Circuit Utilizing V_{T} -Dependent Charge-Transfer to Improve Stability of AMOLED Display

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Maofeng Yang ; Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada ; Nikolas P. Papadopoulos ; William S. Wong ; Manoj Sachdev

A novel voltage-programmed pixel circuit using hydrogenated amorphous silicon (a-Si:H) thin-film transistors (TFTs) for active-matrix organic light-emitting diode (AMOLED) displays is proposed. The threshold voltage shift (ΔVT) of the drive TFT caused by electrical stress is compensated by an incremental gate-to-source voltage (ΔVGS) generated by utilizing the ΔVT-dependent charge transfer from the drive TFT to a TFT-based metal-insulator-semiconductor (MIS) capacitor. A second MIS capacitor is used to inject positive charge to the gate of the drive TFT to improve the OLED drive current. The non-ideality of the ΔVT-compensation, TFT overlap capacitance, programming speed, and OLED degradation are discussed. The effectiveness of the proposed pixel circuit is verified by simulation results.

Published in:

Journal of Display Technology  (Volume:9 ,  Issue: 12 )