By Topic

Optical Bandgap Tunability of Silicon Nanocrystals Fabricated by Inductively Coupled Plasma CVD for Next Generation Photovoltaics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Narasimha Rao Mavilla ; National Center for Photovoltaic Research and Education (NCPRE) and the Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, India ; Chetan Singh Solanki ; Juzer Vasi

Superior optical properties of Si-nanocrystals (Si-NCs) compared with bulk Si, particularly tunability of bandgap by controlling size, can be exploited for realizing next-generation Si tandem solar cells. In view of this, optical bandgap tunability of Si-NCs fabricated by Inductively Coupled Plasma Enhanced Chemical Vapor Deposition (ICPCVD) is presented. The SiOx<;2/SiO2 superlattice approach was used for realizing Si-NCs with tight size control. Deposition time of SiOx sublayer and, hence, the related thickness (TSRO), was used as a variable parameter to realize Si-NCs of varying sizes. Formation of Si-NCs was verified by transmission electron microscopy and Raman spectroscopy. Using XPS analysis, the stoichiometry parameter x was estimated to be 0.82 for SiOx sublayer. The optical bandgap ETauc estimated using Tauc analysis was observed to be tunable from 1.57 to 2.52 eV as the size of Si-NCs was varied from 5.8 (±0.5) to 2 (±0.4) nm, respectively.

Published in:

IEEE Journal of Photovoltaics  (Volume:3 ,  Issue: 4 )