By Topic

Micro-Masonry of MEMS Sensors and Actuators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yong Zhang ; Dept. of Mech. Sci. & Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA ; Hohyun Keum ; Kidong Park ; Rashid Bashir
more authors

Micro-masonry is a route to microassembly that involves elastomeric-stamp-based micromanipulation and direct bonding. This paper presents the assembly of MEMS mechanical sensors and actuators using micro-masonry, demonstrating its capability of constructing 3-D microdevices that are impossible or difficult to realize with monolithic microfabrication. Microfabrication processes for retrievable MEMS components (e.g., combs, spacers, and flexure beams) are developed. As micromanipulation tools, microtipped elastomeric stamps with reversible dry adhesion are also designed and fabricated to pick up and deterministically place those components. After the manipulation, the components are permanently bonded together via rapid thermal annealing without using any additional intermediate layers. The assembled MEMS device is modeled and analyzed in consideration of the microassembly misalignment. The sensing and actuating capabilities of the assembled MEMS devices are experimentally characterized.

Published in:

Journal of Microelectromechanical Systems  (Volume:23 ,  Issue: 2 )