By Topic

Range Aggregation With Set Selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yufei Tao ; Chinese Univ. of Hong Kong, Hong Kong, China ; Cheng Sheng ; Chin-Wan Chung ; Jong-Ryul Lee

In the classic range aggregation problem, we have a set S of objects such that, given an interval I, a query counts how many objects of S are covered by I. Besides COUNT, the problem can also be defined with other aggregate functions, e.g., SUM, MIN, MAX and AVERAGE. This paper studies a novel variant of range aggregation, where an object can belong to multiple sets. A query (at runtime) picks any two sets, and aggregates on their intersection. More formally, let S1,...,Sm be m sets of objects. Given distinct set ids i, j and an interval I, a query reports how many objects in Si ∩ Sj are covered by I. We call this problem range aggregation with set selection (RASS). Its hardness lies in that the pair (i, j) can have (2m) choices, rendering effective indexing a non-trivial task. 2 The RASS problem can also be defined with other aggregate functions, and generalized so that a query chooses more than 2 sets. We develop a system called RASS to power this type of queries. Our system has excellent efficiency in both theory and practice. Theoretically, it consumes linear space, and achieves nearly-optimal query time. Practically, it outperforms existing solutions on real datasets by a factor up to an order of magnitude. The paper also features a rigorous theoretical analysis on the hardness of the RASS problem, which reveals invaluable insight into its characteristics.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:26 ,  Issue: 5 )