Cart (Loading....) | Create Account
Close category search window
 

Parameters Identification and Gas Behavior Characterization of DBD Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lopez, A.M. ; Pontificia Universidad Javeriana, Bogota, Colombia ; Piquet, H. ; Patino, D. ; Diez, R.
more authors

This paper proposes an efficient modeling and an identification method for dielectric barrier discharge (DBD) systems, based on input–output (current–voltage) experimental measurements. The DBD is modeled using an equivalent electric circuit associated with a differential equation that describes the dynamics of its conductance. This equation assumes a homogeneous behavior of the gas. This paper introduces a series of polynomial terms of the current of the gas into the conductance equation. These terms, after identification, are a very useful tool to analyze the physical mechanisms that take place in the gas. The identification process also returns the numerical values of other DBD parameters, such as associated capacitances and the breakdown voltage. In addition, an asymmetric model for the gas, which considers the direction of the current, is proposed to consider the possible geometrical dissimilarity between the two electrodes of the DBD setup. Experimental measurements taken on two different DBD applications are used for validating the proposed approach.

Published in:

Plasma Science, IEEE Transactions on  (Volume:41 ,  Issue: 8 )

Date of Publication:

Aug. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.