Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Minimizing Communication in All-Pairs Shortest Paths

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Solomonik, E. ; Dept. of EECS, Univ. of California, Berkeley, Berkeley, CA, USA ; Buluç, A. ; Demmel, J.

We consider distributed memory algorithms for the all-pairs shortest paths (APSP) problem. Scaling the APSP problem to high concurrencies requires both minimizing inter-processor communication as well as maximizing temporal data locality. The 2.5D APSP algorithm, which is based on the divide-and-conquer paradigm, satisfies both of these requirements: it can utilize any extra available memory to perform asymptotically less communication, and it is rich in semiring matrix multiplications, which have high temporal locality. We start by introducing a block-cyclic 2D (minimal memory) APSP algorithm. With a careful choice of block-size, this algorithm achieves known communication lower-bounds for latency and bandwidth. We extend this 2D block-cyclic algorithm to a 2.5D algorithm, which can use c extra copies of data to reduce the bandwidth cost by a factor of c1/2, compared to its 2D counterpart. However, the 2.5D algorithm increases the latency cost by c1/2. We provide a tighter lower bound on latency, which dictates that the latency overhead is necessary to reduce bandwidth along the critical path of execution. Our implementation achieves impressive performance and scaling to 24,576 cores of a Cray XE6 supercomputer by utilizing well-tuned intra-node kernels within the distributed memory algorithm.

Published in:

Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium on

Date of Conference:

20-24 May 2013