By Topic

Number of Conducting Channels for Armchair and Zig-Zag Graphene Nanoribbon Interconnects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Antonio Maffucci ; Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, Cassino, Italy ; Giovanni Miano

Nanowire-based circuits are candidates for future high-speed electronics. Signal propagation in nanowires can be studied by combining the semiclassical Boltzmann transport theory to the classical transmission line theory. In this paper, we apply this approach to model the signal propagation in graphene nanoribbon (GNR) interconnects. We express the kinetic inductance and the quantum capacitance in terms of the number of effective conducting channels. We study in detail the behavior of the number of effective conducting channels for both the armchair and zig-zag GNRs as their widths vary. This number is computed rigorously, taking into account the actual distribution of the energy spectrum and of the velocity of the conduction electrons. We found that the expressions for the number of conducting channels proposed in the literature give a significant overestimation of its values.

Published in:

IEEE Transactions on Nanotechnology  (Volume:12 ,  Issue: 5 )